Saturday, September 14, 2019

Single Variable Calculus, Chapter 3, 3.9, Section 3.9, Problem 20

Calculate $\delta y$ and $dy$ of $y = \sqrt{x}$ for $x = 1$ and $dx = \delta x = 1 $. Then sketch a diagram showing the line segments with lengths $dx, dy$ and $\delta y$

Solving for $\delta y$

$\delta y = f(x + \delta x) - f(x)$


$
\begin{equation}
\begin{aligned}

f(x + \delta x) =& f(1 + 1) = f(2) = \sqrt{2}
\\
\\
f(x) =& f(1) = \sqrt{1}
\\
\\
f(1) =& 1
\\
\\
\delta y =& f(2) - f(1)
\\
\\
\delta y =& \sqrt{2} - 1
\\
\\
\delta y =& 0.41

\end{aligned}
\end{equation}
$


Solving for $dy$


$
\begin{equation}
\begin{aligned}

dy =& f'(x) dx
\\
\\
\frac{dy}{dx} =& \frac{d}{dx} (x)^{\frac{1}{2}}
\\
\\
\frac{dy}{dx} =& \frac{1}{2} (x)^{\frac{-1}{2}}
\\
\\
dy =& \frac{1}{2 \sqrt{x}} dx
\\
\\
dy =& \left( \frac{1}{2 \sqrt{1}} \right) (1)
\\
\\
dy =& \frac{1}{2(1)}
\\
\\
dy =& \frac{1}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...