Friday, September 27, 2019

Single Variable Calculus, Chapter 7, 7.3-1, Section 7.3-1, Problem 50

Determine the limit $\displaystyle \lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)]$

$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= \lim_{x \to \infty} \ln \left( \frac{2+x}{1+x} \right)\\
\\
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= \lim_{x \to \infty} \ln \left( \frac{\frac{2}{x}+ \frac{x}{x}}{\frac{1}{x}+\frac{x}{x}} \right)\\
\\
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= \lim_{x \to \infty} \ln \left( \frac{\frac{2}{x}+1}{\frac{1}{x}+1} \right)\\
\\
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= \ln \left( \frac{0+1}{0+1}\right)\\
\\
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= \ln \left( \frac{1}{1}\right)\\
\\
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= \ln 1\\
\\
\lim_{x \to \infty} [\ln (2 + x) - \ln (1 + x)] &= 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...