Tuesday, December 31, 2019

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 33

Determine $y''$ of $9x^2 + y^2 = 9$ by using implicit differentiation.

Solving for the 1st Derivative


$
\begin{equation}
\begin{aligned}

9 \frac{d}{dx} (x^2) + \frac{d}{dx} (y^2) =& \frac{d}{dx} (9)
\\
\\
(9)(2x) + (2y) \frac{dy}{dx} =& 0
\\
\\
18x + 2y \frac{dy}{dx} =& 0
\\
\\
2y \frac{dy}{dx} =& -18x
\\
\\
\frac{\displaystyle \cancel{2y} \frac{dy}{dx}}{\cancel{2y}} =& \frac{-18x}{2y}
\\
\\
\frac{dy}{dx} =& \frac{-9x}{y}

\end{aligned}
\end{equation}
$


Solving for the 2nd Derivative


$
\begin{equation}
\begin{aligned}

\frac{d^2y}{dx^2} =& \frac{\displaystyle y \frac{d}{dx} (-9x) - (-9x) \frac{d}{dx} (y)}{y^2}
&& \text{Apply Quotient Rule}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle (y)(-9) - (-9x) \frac{dy}{dx}}{y^2}
&& \text{Substitute $\large \frac{dy}{dx} = \frac{-9x}{y}$}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-9y + (9x) \displaystyle \left( \frac{-9x}{y} \right) }{y^2}
&&
\\
\\
\frac{d^2y}{dx^2} =& \frac{-9y + \displaystyle \frac{(-81x^2)}{y}}{y^2}
&&
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle \frac{-9y^2 - 81x^2}{y}}{y^2}
&&
\\
\\
\frac{d^2y}{dx^2} =& \frac{-9y^2 - 81x^2}{(y)(y^2)}
&&
\\
\\
\frac{d^2y}{dx^2} =& \frac{-9 (9x^2 + y^2)}{y^3}
&& \text{We know that $9x^2 + y^2 = 9$}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-9(9)}{y^3}
&&
\\
\\
\frac{d^2y}{dx^2} =& \frac{-81}{y^3} \text{ or } y'' = \frac{-81}{y^3}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...