Tuesday, December 17, 2019

Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 76

Find the integral $\int^1_0 xe^{-x^2} dx$

If we let $u = -x^2$, then $du = -2x dx$, so $\displaystyle xdx = \frac{-du}{2}$. When $x = 0, u = 0$ and when $x = 1, u = -1$. Therefore,


$
\begin{equation}
\begin{aligned}

\int^1_0 xe^{-x^2} dx =& \int^1_0 e^{-x^2} x dx
\\
\\
\int^1_0 xe^{-x^2} dx =& \int^1_0 e^u \cdot \frac{-du}{2}
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} \int^1_0 e^u du
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} [e^u]^1_0
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} [e^{-1} - e^0]
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{-1}{2} (e^{-1} - 1)
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{- (e^{-1} - 1)}{2}
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{\displaystyle 1 - \frac{1}{e}}{2}
\\
\\
\int^1_0 xe^{-x^2} dx =& \frac{e - 1}{2e}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...