The integral does not have infinite bounds and the function is well defined over the whole interval of integration so there is no need to use limits. Therefore, the integral is not improper.
int_0^2 e^-x dx=
Substitute u=-x => du=-dx, u_l=0, u_u=-2.
u_l and u_u denote lower and upper bound of integration.
-int_0^-2 e^u du=int_-2^0 e^u du=e^u|_-2^0=e^0-e^(-2)=1-e^-2
As we can see there was no need to use limits for calculating the integral.
The image below shows the graph of the function. We can see from the image that the function is not only defined but continuous over the whole interval of integration. In fact, domain of exponential function is set of all real numbers (can be extended to all complex numbers).
https://en.wikipedia.org/wiki/Improper_integral
Sunday, April 1, 2012
int_0^2 e^(-x) dx Decide whether the integral is improper. Explain your reasoning
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment