Sunday, April 1, 2012

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 39

We need to find the function $f \circ g \circ h$

$f(x) = \qquad \quad \sqrt{x - 3}, \qquad \quad g(x)=x^2, \qquad \quad h(x)= x^3 + 2$


$
\begin{equation}
\begin{aligned}

f \circ g \circ h =& f(g(h(x)))\\

\text{ Solving for $g \circ h$}\\

g(h(x)) = &x^2\\

g(x^3 + 2) =& x^2
&& \\

g(x^3 + 2) =& (x^3 + 2)^2
&& \text{ Using FOIL method}\\

g \circ h =& x^6 + 4x^3 + 4\\

\text{ Solving for $f \circ g \circ h$}\\

g \circ h =& x^6 + 4x^3 + 4\\

f(g(h(x))) =& \sqrt{x - 3}\\

f (x^6 + 4x^3 + 4) =& \sqrt{x - 3}
&& \text{ Substitute the value of $x$}\\

f(x^6 + 4x^3 + 4) =& \sqrt{x^6 + 4x^3 + 4 -3}
&& \text{ Combine like terms}

\end{aligned}
\end{equation}
$



$\boxed{f \circ g \circ h = \sqrt{x^6 + 4x^3 + 1}}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...