Tuesday, September 18, 2012

Beginning Algebra With Applications, Chapter 2, 2.2, Section 2.2, Problem 178

Simplify $\displaystyle -\frac{1}{4} [2x + 2(y -6y)]$

$
\begin{equation}
\begin{aligned}
&= -\frac{1}{4} [2x + 2(y) - 2(6y)] && \text{Use the Distributive Property}\\
\\
&= -\frac{1}{4} [2x + 2(y) - (2 \cdot 6) y] && \text{Use the Associative Property of Multiplication to group factors}\\
\\
&= -\frac{1}{4} [2x + 2y - 12y] && \text{Simplify}\\
\\
&= -\frac{1}{4} [2x - 10y] && \text{Combine like terms}\\
\\
&= -\frac{1}{4} (2x) - \left( -\frac{1}{4} \right) (10y) && \text{Again, use the Distributive Property}\\
\\
&= \left(\left( -\frac{1}{4} \right) \cdot 2 \right) x + \left( \frac{1}{4} \cdot 10 \right)y && \text{Again, by using the Associative Property of Multiplication to group factors }\\
\\
&= -\frac{2}{4}x + \frac{10}{4}y && \text{Evaluate}\\
\\
&= -\frac{1}{2}x + \frac{5}{2}y && \text{Simplify}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...