Saturday, September 29, 2012

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 18

Determine $\displaystyle \frac{dy}{dx}$ of $\displaystyle \tan(x-y) = \frac{y}{1+x^2}$ by Implicit Differentiation.

$\displaystyle \frac{d}{dx} \left[ \tan (x-y) \right]= \frac{d}{dx} \left(\frac{y}{1+x^2}\right)$


$
\begin{equation}
\begin{aligned}
\frac{d}{dx} \left[ \tan (x-y) \right] &= \frac{(1+x^2) \frac{d}{dx} (y) - (y) \frac{d}{dx} (1+x^2)}{(1+x^2)^2}\\
\\
\sec^2 ( x-y ) \cdot \frac{d}{dx} (x-y) &= \frac{(1+x^2)\frac{dy}{dx}-(y)(0+2x)}{(1+x^2)^2}\\
\\
\left[ \sec^2(x-y) \right] \left( 1-\frac{dy}{dx} \right) &= \frac{(1+x^2) \frac{dy}{dx} - 2xy}{(1+x^2)^2}\\
\\
\sec^2(x-y) - \sec^2(x-y) \frac{dy}{dx} &= \frac{(1+x^2) \frac{dy}{dx} - 2xy }{(1+x^2)^2}\\
\\
(1+x^2)^2 \left[ \sec^2(x-y)-\sec^2(x-y)\frac{dy}{dx}\right] &= (1+x^2) \frac{dy}{dx} - 2xy \\

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}
(1+x^2)^2 \sec^2 (x-y) - y' (1+x^2)^2 \sec^2 (x-y) &= y' (1+x^2) - 2xy\\
\\
y' (1+x^2) + y' (1+x^2)^2 \sec^2 (x-y) &= (1+x^2)^2 \sec^2 (x-y) +2xy\\
\\
y' \left[ (1+x^2) + (1+x^2)^2 \sec^2 (x-y) \right] &= (1+x^2)^2 \sec^2 (x-y) + 2xy\\
\\
\frac{y' \cancel{ \left[ (1+x^2) + (1+x^2)^2 \sec^2 (x-y) \right]} }{\cancel{(1+x^2) + (1+x^2)^2 \sec^2 (x-y)}} &= \frac{(1+x^2)^2 \sec^2 (x-y) + 2xy}{(1+x^2)+(1+x^2)^2\sec^2(x-y)}\\
\\
y' &= \frac{(1+x^2)^2 \sec^2 (x-y) + 2xy}{(1+x^2)+(1+x^2)^2\sec^2(x-y)}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...