Wednesday, September 19, 2012

Calculus of a Single Variable, Chapter 6, 6.1, Section 6.1, Problem 20

Given,
y=3e^(2x) -4sin(2x)
so,
we have to find
y'=(3e^(2x) -4sin(2x))' =(3e^(2x))'-(4sin(2x))'
=3*2 e^(2x)-2*4 cos(2x)
=6e^(2x)-8cos(2x)
similarly

y'' =(6e^(2x)-8cos(2x))'
=6*2 e^(2x)+2*8 sin(2x)
=12 e^(2x)+16 sin(2x)

y'''=(12 e^(2x)+16 sin(2x))'
=12*2 e^(2x)+16*2 cos(2x)
=24 e^(2x)+32 cos(2x)

y'''' =(24 e^(2x)+32 cos(2x))'
=24*2 e^(2x)-32*2 sin(2x)
=48 e^(2x)-64sin(2x)

So lets see whether y'''' -16y=0
=> 48 e^(2x)-64sin(2x) -16(3e^(2x) -4sin(2x))
=48 e^(2x)-64sin(2x) -48 e^(2x)+64sin(2x) =0
so,
y'''' -16y=0

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...