Saturday, September 29, 2012

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 92

Evaluate $\displaystyle \int^4_0 \frac{1}{16 + t^2} dt$

If we let $t = 4u$, then $dt = 4du$

Make sure that the upper and lower limits are also in terms of $u$

So,


$
\begin{equation}
\begin{aligned}

\int^4_0 \frac{1}{16 + t^2} dt =& \int^{\frac{4}{4}}_{\frac{0}{4}} \frac{4 du }{16 + (4u)^2}
\\
\\
=& \int^1_0 \frac{4du}{16 + 16u^2}
\\
\\
=& \int^1_0 \frac{4du}{16 (1 + u^2)}
\\
\\
=& \frac{1}{4} \int^1_0 \frac{du}{1 + u^2}

\end{aligned}
\end{equation}
$


Recall that

$\displaystyle \frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2}$

Thus,


$
\begin{equation}
\begin{aligned}

=& \frac{1}{4} \left[ \tan^{-1} x \right]^1_0
\\
\\
=& \frac{1}{4} \left[ \tan^{-1} (1) - \tan^{-1} (0) \right]^1_0
\\
\\
=& \frac{1}{4} \tan^{-1} (1)
\\
\\
=& \frac{\pi}{16}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...