Wednesday, September 19, 2012

College Algebra, Chapter 3, 3.2, Section 3.2, Problem 76

Find a function whose graph is the line segment joining the points $(-3, -2)$ and $(6, 3)$

Using Two-Point Form


$
\begin{equation}
\begin{aligned}

y - y_1 =& \left( \frac{y_2 - y_1}{x_2 - x_1} \right) (x - x_1)
&&
\\
\\
y - (-2) =& \left[ \frac{3 - (-2)}{6 - (-3)} \right] [x - (-3)]
&& \text{Substitute } x_1 = -3, x_2 = 6 \text{ and } y_1 = -2, y_2 = 3
\\
\\
y + 2 =& \left( \frac{3 + 2}{6 + 3} \right) (x + 3)
&& \text{Simplify}
\\
\\
y + 2 =& \frac{5}{9} (x + 3)
&& \text{Subtract } 2
\\
\\
y =& \frac{5}{9} (x + 3) - 2
&& \text{Apply Distributive Property}
\\
\\
y =& \frac{5x + 15}{9} - 2
&& \text{Get the LCD}
\\
\\
y =& \frac{5x + 15 - 18}{9}
&& \text{Simplify}
\\
\\
y =& \frac{5x - 3}{9}
&& \text{Answer}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...