Monday, June 24, 2013

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 12

Evaluate $ \left[ \begin{array}{ccc}
2 & 1 & 2 \\
6 & 3 & 4
\end{array} \right]
\left[\begin{array}{cc}
1 & -2 \\
3 & 6 \\
-2 & 0
\end{array} \right]$ or explain why it can not be performed.



$
\begin{equation}
\begin{aligned}

& \text{Entry} && \text{Inner Product of} &&& \text{Value} &&&& \text{Matrix}
\\
\\
& C_{11} && \left[ \begin{array}{ccc}
2 & 1 & 2 \\
6 & 3 & 4
\end{array} \right]

\left[ \begin{array}{cc}
1 & -2 \\
3 & 6 \\
-2 & 0
\end{array} \right]

&&& 2 \cdot 1 + 1 \cdot 3 + 2 \cdot (-2) = 1
&&&& \left[ \begin{array}{cc}
1 & \\
&
\end{array}
\right]

\\
\\
\\
\\

& C_{12} && \left[ \begin{array}{ccc}
2 & 1 & 2 \\
6 & 3 & 4
\end{array} \right]

\left[ \begin{array}{cc}
1 & -2 \\
3 & 6 \\
-2 & 0
\end{array} \right]

&&& 2 \cdot (-2) + 1 \cdot 6 + 2 \cdot 0 = 2
&&&& \left[ \begin{array}{cc}
1 & 2 \\
&
\end{array}
\right]

\\
\\
\\
\\

& C_{21}
&& \left[ \begin{array}{ccc}
2 & 1 & 2 \\
6 & 3 & 4
\end{array} \right]

\left[ \begin{array}{cc}
1 & -2 \\
3 & 6 \\
-2 & 0
\end{array} \right]

&&& 6 \cdot 1 + 0 \cdot 3 + 4 \cdot (-2) = -2
&&&& \left[ \begin{array}{cc}
1 & 2 \\
-2 &
\end{array}
\right]

\\
\\
\\
\\

& C_{22}
&& \left[ \begin{array}{ccc}
2 & 1 & 2 \\
6 & 3 & 4
\end{array} \right]

\left[ \begin{array}{cc}
1 & -2 \\
3 & 6 \\
-2 & 0
\end{array} \right]
&&& 6 \cdot (-2) + 0 \cdot 6 + 4 \cdot 0 = -12
&&&& \left[ \begin{array}{cc}
1 & 2 \\
-2 & -12
\end{array}
\right]


\end{aligned}
\end{equation}
$


Thus, we have

$\displaystyle \left[ \begin{array}{ccc}
2 & 1 & 2 \\
6 & 3 & 4
\end{array} \right]

\left[
\begin{array}{cc}
1 & -2 \\
3 & 6 \\
-2 & 0
\end{array}
\right]

=

\left[
\begin{array}{cc}
1 & 2 \\
-2 & -12
\end{array}
\right]

$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...