Monday, June 24, 2013

int xe^(2x)/(2x+1)^2 dx Find the indefinite integral

Given to solve,
int xe^(2x)/(2x+1)^2 dx
let u= xe^(2x) so , u' = e^(2x) +2xe^(2x)
and
v'= (1/((2x+1)^2)) = (2x+1)^(-2)
v= int (2x+1)^(-2) dx
let t= 2x+1 => dt = 2dx
so v' =t^(-2)
=>  v= int t^(-2) dt /2
        = t^(-2+1) /(-2+1) *(1/2)
so v = (2x+1)^(-2+1) /(-2+1) * (1/2)
 = -1/(2(2x+1))
by applying the integration by parts we get ,
int uv' = uv - int u'v
so,
int xe^(2x)/(2x+1)^2 dx
= (xe^(2x))(-1/(2(2x+1))) - int (e^(2x) +2xe^(2x))(-1/(2(2x+1))) dx
= (xe^(2x))(-1/(2(2x+1))) + int ((e^(2x) +2xe^(2x))/(2(2x+1))) dx
=(xe^(2x))(-1/(2(2x+1))) +(1/2) int (e^(2x) (1+2x)/((2x+1))) dx
=(xe^(2x))(-1/(2(2x+1))) +(1/2) int (e^(2x)) dx
as we know int e^(ax) dx = e^(ax) /a
so,
=-(xe^(2x))(1/(2(2x+1))) +(1/2) (e^(2x))/2
= (-xe^(2x))/(2(2x+1)) +e^(2x)/4 +c

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...