Monday, June 24, 2013

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 58

Use a determinant to find the area of the triangle with vertices $(-2,5), (7,2), (3, -4)$ and sketch the triangle.








$
\begin{equation}
\begin{aligned}

\text{area } = \pm \frac{1}{2} \left| \begin{array}{ccc}
-2 & 5 & 1 \\
7 & 2 & 1 \\
3 & -4 & 1
\end{array} \right| =& \pm \frac{1}{2} \left[ -2 \left| \begin{array}{cc}
2 & 1 \\
-4 & 1
\end{array} \right| - 5 \left| \begin{array}{cc}
7 & 1 \\
3 & 1
\end{array} \right| + 1 \left| \begin{array}{cc}
7 & 2 \\
3 & -4
\end{array} \right| \right]
\\
\\
=& \pm \frac{1}{2} \left[ -2 (2 \cdot 1 - 1 \cdot (-4)) - 5 (7 \cdot 3 - 1 \cdot 3) + (7 \cdot (-4) - 2 \cdot 3) \right]
\\
\\
=& \frac{-1}{2} (-66) \quad \text{to make the area positive, we use negative sign in the formula}
\\
\\
=& 33 \text{ square units}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...