Friday, June 28, 2013

Precalculus, Chapter 1, 1.4, Section 1.4, Problem 10

Determine the center and radius of the given circle. Write the standard form of the equation.







Using the distance formula, to solve for the diameter, but $\displaystyle r = \frac{d}{2}$. So we have


$
\begin{equation}
\begin{aligned}

r =& \frac{\sqrt{(1-3)^2 + (0-2)^2}}{2}
\\
\\
r =& \frac{\sqrt{4+4}}{2}
\\
\\
r =& \frac{\sqrt{8}}{2}
\\
\\
r =& \frac{2 \sqrt{2}}{2}
\\
\\
r =& \sqrt{2}

\end{aligned}
\end{equation}
$


To find the center of the circle, we use the Midpoint Formula,


$
\begin{equation}
\begin{aligned}

M =& \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\\
\\
=& \left( \frac{0+2}{2}, \frac{1+3}{2} \right)
\\
\\
=& \left( \frac{2}{2} , \frac{4}{2} \right)
\\
\\
=& (1,2)

\end{aligned}
\end{equation}
$


So the center of the circl is $(1,2)$.

The equation of the circle in standard form is



$
\begin{equation}
\begin{aligned}

(x-1)^2 + (y-2)^2 =& (\sqrt{2})^2
\\
(x-1)^2 + (y-2)^2 =& 2

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...