Monday, June 24, 2013

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 60

Determine the $x$-coordinates of all points on the curve $y = \sin 2 x - 2 \sin x$ at which the tangent line is horizontal.


$
\begin{equation}
\begin{aligned}

y' = m =& \frac{d}{dx} (\sin 2 x - 2 \sin)
&& \text{Where $m = 0$ because tangent line is horizontal}
\\
\\
m =& \frac{d}{dx} (\sin 2 x) - 2 \frac{d}{dx} \sin
&&
\\
\\
m =& \cos 2 x \cdot \frac{d}{dx} (2x) - 2 \cos x
&&
\\
\\
m =& (\cos 2x) (2) - 2 \cos x
&&
\\
\\
0 =& 2 \cos 2x - 2 \cos x
&&
\\
\\
2 \cos 2x =& 2 \cos x
&&
\\
\\
\frac{\cancel{2} \cos 2x}{\cancel{2}} =& \frac{\cancel{2} \cos x}{\cancel{2}}
&&

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

& \cos 2 x = \cos x
&& \text{Using Double Angle Formula $(\cos 2x = 2 \cos^2 x - 1)$}
\\
\\
& 2 \cos^2 x - 1 = \cos x
&&
\\
\\
& 2 \cos ^2 x - \cos x - 1 = 0
&&
\\
\\
& 2 \cos ^2 x - 2 \cos x + \cos x - 1 = 0
&& \text{We let $- \cos x = -2 \cos x + \cos x$ to have a complete factor}
\\
\\
& 2 \cos x (\cos x - 1) + 1 (\cos x - 1) = 0
&&
\\
\\
& (2 \cos x + 1) (\cos x - 1) = 0
&&

\end{aligned}
\end{equation}
$


$\displaystyle \cos x = \frac{-1}{2} || \cos x = 1$







Based from the graph and unit circle diagram

$\displaystyle x = 2 \pi n, \frac{\pi n}{2} \pm \frac{\pi}{3} \qquad $ (where $n$ is any integer)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...