Friday, June 28, 2013

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 48

Determine the $\displaystyle \lim_{x \to 0} (\csc x - \cot x)$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

$\displaystyle \lim_{x \to 0} (\csc x - \cot x) = \lim_{x \to 0} \left( \frac{1}{\sin x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to 0} \left( \frac{1 - \cos x}{\sin x} \right) = \frac{1- \cos 0}{\sin 0} = \frac{1-1}{0} = \frac{0}{0}$ Indeterminate.

Thus by applying L'Hospital's Rule...

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \left( \frac{1- \cos x}{\sin x} \right) &= \lim_{x \to 0} \left( \frac{0-(-\sin x)}{\cos x} \right)\\
\\
&= \lim_{x \to 0} \left( \frac{\sin x}{\cos x} \right)\\
\\
&= \lim_{x \to 0} \tan x\\
\\
&= \tan 0\\
\\
&= 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...