Wednesday, January 1, 2014

Single Variable Calculus, Chapter 8, 8.3, Section 8.3, Problem 36

Evaluate $\displaystyle \int \frac{dx}{x^4 \sqrt{x^2-2 }}$, check your answer if its reasonable by grouping the integrand and its indefinite integral on the same screen.
By trigonometric substitution,



$\displaystyle\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{2}}{x}$ and $\displaystyle \tan \theta = \frac{\sqrt{x^2 - 2}}{\sqrt{2}}$
$\displaystyle x = \frac{\sqrt{2}}{\cos \theta} = \sqrt{2} \sec \theta$

So,

$
\begin{equation}
\begin{aligned}
\int \frac{dx}{x^4 \left( \sqrt{x^2 - 2} \right) } &= \int \frac{\sqrt{2}\sec \theta \tan \theta d \theta}{ \left( \sqrt{2} \sec \theta \right)^4 ( \sqrt{2} \tan \theta )}\\
\\
&= \int \frac{d \theta}{4 \sec^3 \theta}\\
\\
&= \frac{1}{4} \int \cos^3 \theta d \theta
\end{aligned}
\end{equation}
$

By using integration by parts,
If we let $u = \cos^2 \theta$ and $dv = \cos \theta d \theta$, then
$du = 2 \cos \theta ( - \sin \theta d \theta)$ and $\displaystyle v = \int \cos \theta d\theta = \sin \theta$

So,
$\displaystyle \int \cos^3 \theta d \theta = uv - \int v du = \sin \theta \cos^2 \theta + 2 \int \sin^2 \theta \cos \theta d \theta$


$
\begin{equation}
\begin{aligned}
\text{by substituting, if we let } z &= \sin \theta \text{ , then } dz = \cos \theta d \theta\\
\\
&= \sin \theta \cos^2 \theta + 2 \int z^2 dz\\
\\
&= \sin \theta \cos^2 \theta + 2 \left[ \frac{z^3}{3} \right]\\
\\
&= \sin \theta \cos^2 \theta + 2 \frac{(\sin \theta)^3}{3}
\end{aligned}
\end{equation}
$


So,
$\displaystyle \frac{1}{4} \int \cos^3 \theta d \theta = \frac{1}{4} \left[ \sin \theta \cos^2 \theta + \frac{2(\sin \theta)^3}{3}\right] + c$

From the triangle,

$
\begin{equation}
\begin{aligned}
&= \frac{1}{4} \left[ \left( \frac{\sqrt{x^2-2}}{x} \right) \left( \frac{\sqrt{2}}{2} \right)^2 + \frac{2}{3} \left( \frac{\sqrt{x^2-2}}{x} \right)^2 \right]\\
\\
&= \frac{1}{4} \left[ \frac{2\sqrt{x^2-2}}{x^3} + \frac{2}{3} \left( \frac{\sqrt{x^2 - 2}}{x^3} \right)^3 \right]\\
\\
&= \left[ \frac{\sqrt{x^2 - 2}}{2x^3} + \frac{\left( \sqrt{x^2 - 2 } \right)^3}{6x^3} \right]\\
\\
\int \frac{dx}{x^4 \sqrt{x^2-2}} &= \frac{3\sqrt{x^2 - 2}+\left( \sqrt{x^2 - 2} \right)^3}{6x^3} + c\\
\end{aligned}
\end{equation}
$




Based from the graph, we can say that our answer is reasonable because $f$ is increasing whenever $f$ is positive. On the other hand, $f$ is decreasing whenever $f'$ is negative.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...