Sunday, October 5, 2014

Calculus: Early Transcendentals, Chapter 2, 2.3, Section 2.3, Problem 43

lim_(x->0.5^-) (2x + 12)/(|2x^3 - x^2|)
sol:
lim_(x->0.5^-) (2x + 12)/(|2x^3 - x^2|)
=>(lim_(x->0.5^-) (2x + 12))/(lim_(x->0.5^-) (|2x^3 - x^2|)) ------(1)
in the numerator ,we get
(lim_(x->0.5^-) (2x + 12))
= 2(0.5) + 12 = 1 +12 = 13
in the denominator we get
(lim_(x->0.5^-) (|2x^3 - x^2|))
as when x-> 0.5^- so |2x^3 - x^2| is negatiive
so,
|2x^3 - x^2| = -(2x^3 - x^2)= x^2 - 2x^3
so, (lim_(x->0.5^-) (|2x^3 - x^2|)) =(lim_(x->0.5^-) (x^2 - 2x^3))
when approaching to 0 the denominator is a positive quantity so,
(lim_(x->0.5^-) (x^2 - 2x^3)) = 0^+

Now, from (1)
(lim_(x->0.5^-) (2x + 12))/(lim_(x->0.5^-) (|2x^3 - x^2|)) = 13/0^+ = + oo

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...