For the given integral problem: int (6x)/(x^3-8)dx , we may partial fraction decomposition to expand the integrand: f(x)=(6x)/(x^3-8) .
The pattern on setting up partial fractions will depend on the factors of the denominator. For the given problem, the denominator is in a form of difference of perfect cube : x^3 -y^3 = (x-y)(x^2+xy+y^2)
Applying the special factoring on (x^3-8) , we get:
(x^3-8) =(x^3-2^3)
=(x-2)(x^2+x*2+2^2)
=(x-2)(x^2+2x+4)
For the linear factor (x-2) , we will have partial fraction: A/(x-2) .
For the quadratic factor (x^2+2x+4) , we will have partial fraction: (Bx+C)/(x^2+2x+4) .
The integrand becomes:
(6x)/(x^3-8) =A/(x-2) +(Bx+C)/(x^2+2x+4)
Multiply both side by the LCD =(x-2)(x^2+2x+4) :
((6x)/(x^3-8))*(x-2)(x^2+2x+4) =[ A/(x-2) +(Bx+C)/(x^2+2x+4)] *(x-2)(x^2+2x+4)
6x =A(x^2+2x+4) +(Bx+C)(x-2)
We apply zero-factor property on (x-2)(x^2+2x+4) to solve for values we can assign on x.
x-2 = 0 then x=2
x^2+2x+4=0 then x = -1+-sqrt(3)i
To solve for A , we plug-in x=2 :
6*2 =A(2^2+2*2+4) +(B*2+C)(2-2)
12 =A(4+4+4) +(2B+C)(0)
12 = 12A +0
12/12 = (12A)/12
A =1
To solve for C , plug-in A=1 and x=0 so that B*x becomes 0 :
6*0 =A(0^2+2*0+4) +(B*0+C)(0-2)
0 =1(0+0+4) +(0+C)(-2)
0=4 -2C
2C =4
(2C)/2=4/2
C=2
To solve for B , plug-in A=1 , C=2 , and x=1 :
6*1 =1(1^2+2*1+4) +(B*1+2)(1-2)
6 = 1+2+4 +(B+2)*(-1)
6 = 1+2+4 -B-2
6 = 5-B
6-5 =-B
1=-B
then B =-1
Plug-in A = 1 , B =-1, and C=2 , we get the partial fraction decomposition:
int (6x)/(x^3-8) dx = int [ 1/(x-2) +(-x+2)/(x^2+2x+4)] dx
=int [ 1/(x-2) -x/(x^2+2x+4)+2/(x^2+2x+4)] dx
Apply the basic integration property: int (u+-v+-w) dx = int (u) dx +- int (v) dx+- int (w) dx .
int [ 1/(x-2) -x/(x^2+2x+4)+2/(x^2+2x+4)] dx =int 1/(x-2) dx- int x/(x^2+2x+4)dx+ int 2/(x^2+2x+4) dx
For the first integral, we apply integration formula for logarithm: int 1/u du = ln|u|+C .
Let u =x-2 then du = dx
int 1/(x-2) dx =int 1/u du
= ln|u|
= ln|x-2|
For the second integral, we apply indefinite integration formula for rational function:
int x/(ax^2+bx+c) dx =1/(2a)ln|ax^2+bx+c| -b/(asqrt(4ac-b^2))arctan((2ax+b)/sqrt(4ac-b^2))
By comparing "ax^2 +bx +c " with "x^2+2x+4 ", we determine the corresponding values: a=1 , b=2 , and c=4 .
int x/(x^2+2x+4)dx=1/(2*1)ln|1x^2+2x+4| -2/(1sqrt(4*1*4-2^2))arctan((2*1x+2)/sqrt(4*1*4-2^2))
=1/2ln|x^2+2x+4|-2/sqrt(16-4)arctan((2x+2)/sqrt(16-4))
=1/2ln|x^2+2x+4|-2/sqrt(12)arctan((2x+2)/sqrt(12))
=1/2ln|x^2+2x+4|-2/(2sqrt(3))arctan((2(x+1))/(2sqrt(3)))
=1/2ln|x^2+2x+4| -1/sqrt(3)arctan((x+1)/sqrt(3))
=(ln|x^2+2x+4|)/2 -(arctan((x+1)/sqrt(3)))/sqrt(3)
Apply indefinite integration formula for rational function with a=1 , b=2 , and c=4 :
int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C
Then,
int 2/(x^2+2x+4) dx =2int 1/(x^2+2x+4) dx
=2*[2/sqrt(4*1*4-2^2)arctan((2*1x+2)/sqrt(4*1*4-2^2))]
= 2*[2/sqrt(16-4)arctan((2x+2)/sqrt(16-4))]
= 2*[2/(2sqrt(12))arctan((2x+2)/sqrt(12)) ]
= 2*[2/(2sqrt(3))arctan((2(x+1))/(2sqrt(3)))]
= 2*[1/sqrt(3)arctan((x+1)/sqrt(3))]
=2/sqrt(3)arctan((x+1)/sqrt(3))
=(2arctan((x+1)/sqrt(3)))/sqrt(3)
Combining the results, we get the indefinite integral as:
int (6x)/(x^3-8) dx =ln|x-2| - [(ln|x^2+2x+4|)/2 -arctan((x+1)/sqrt(3))/sqrt(3)]+(2arctan((x+1)/sqrt(3)))/sqrt(3) +C
=ln|x-2| -(ln|x^2+2x+4|)/2 +(arctan((x+1)/sqrt(3)))/sqrt(3)+(2arctan((x+1)/sqrt(3)) )/sqrt(3)+C
= (2ln|x-2|-ln|x^2+2x+4|)/2 +(arctan((x+1)/sqrt(3))+2arctan((x+1)/sqrt(3)))/sqrt(3) +C
= (ln|(x-2)^2/(x^2+2x+4)|)/2+(3arctan((x+1)/sqrt(3)))/sqrt(3) +C
= (ln|(x^2-4x+4)/(x^2+2x+4)|)/2 +sqrt(3)arctan((sqrt(3)(x+1))/3)+C
= (ln|(x^2-4x+4)/(x^2+2x+4)|)/2 +sqrt(3)arctan((xsqrt(3)+sqrt(3))/3)+C
Friday, October 17, 2014
Calculus of a Single Variable, Chapter 8, 8.5, Section 8.5, Problem 18
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment