Thursday, October 16, 2014

sum_(n=1)^oo n/sqrt(n^2+1) Determine the convergence or divergence of the series.

Recall that the Divergence test follows the condition:
If lim_(n-gtoo)a_n!=0 then sum a_n diverges.
For the given series sum_(n=1)^oo n/sqrt(n^2+1) , we have a_n=n/sqrt(n^2+1)
To evaluate the a_n=n/sqrt(n^2+1) , we divide by n with the highest exponent which is n  or sqrt(n^2) . Note: n = sqrt(n^2) .
a_n=(n/n)/(sqrt(n^2+1)/sqrt(n^2))
     = 1 /sqrt((n^2+1)/n^2)
     = 1/sqrt(n^2/n^2+1/n^2)
     =1/sqrt(1+1/n^2)
Applying the divergence test, we determine the limit of the series as:
lim_(n-gtoo)a_n =lim_(n-gtoo)n/sqrt(n^2+1)
                  = lim_(n-gtoo)1/sqrt(1+1/n^2)
                =[lim_(n-gtoo)1] /[lim_(n-gtoo)sqrt(1+1/n^2)]
                = 1 / sqrt(1+ 1/oo)
                =1 / sqrt(1+0)
                =1 / sqrt(1)
                = 1/1
                =1
The lim_(n-gtoo)n/sqrt(n^2+1)=1 satisfy the condition lim_(n-gtoo)a_n!=0.
Therefore, the series sum_(n=1)^oon/sqrt(n^2+1) is a divergent series.
We can also verify with the graph of f(n) =n/sqrt(n^2+1) :

As the "n" value increases, the graph diverges.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...