Sunday, October 12, 2014

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 38

Solve the system $\left\{\begin{equation}
\begin{aligned}

10x - 17y =& 21
\\
20x - 31y =& 39

\end{aligned}
\end{equation} \right.$ using Cramer's Rule.

For this system we have


$
\begin{equation}
\begin{aligned}

|D| =& \left| \begin{array}{cc}
10 & - 17 \\
20 & - 31
\end{array} \right| = 10 \cdot (-31) - (-17) \cdot 20 = 30
\\
\\
|D_{x}| =& \left| \begin{array}{cc}
21 & -17 \\
39 & -31
\end{array} \right| = 21 \cdot (-31) - (-17) \cdot 39 = 12
\\
\\
|D_{y}| =& \left| \begin{array}{cc}
10 & 21 \\
20 & 39
\end{array} \right| = 10 \cdot 39 - 21 \cdot 20 = -30

\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

x =& \frac{|D_x|}{|D|} = \frac{12}{30} = \frac{2}{5}
\\
\\
y =& \frac{|D_y|}{|D|} = \frac{-30}{30} = -1

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...