Wednesday, August 5, 2015

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 26

Find all real solutions of the equation $\displaystyle \frac{\displaystyle x + \frac{2}{x}}{\displaystyle 3 + \frac{4}{x}} = 5x$


$
\begin{equation}
\begin{aligned}

\frac{\displaystyle x + \frac{2}{x}}{\displaystyle 3 + \frac{4}{x}} =& 5x
&& \text{Given}
\\
\\
\frac{\displaystyle \frac{x^2 + 2x}{x}}{\displaystyle \frac{3x + 4}{x}} =& 5x
&& \text{Simplify the numerator and denominator}
\\
\\
\frac{x^2 + 2x}{3x + 4} =& 5x
&& \text{Cancel out } x
\\
\\
x^2 + 2x =& 5x (3x + 4)
&& \text{Multiply both sides by } (3x + 4)
\\
\\
x^2 + 2x =& 15x^2 + 20x
&& \text{Expand}
\\
\\
14x^2 + 18x =& 0
&& \text{Combine like terms}
\\
\\
2x(7x + 9) =& 0
&& \text{Factor out } 2x
\\
\\
2x =& 0 \text{ and } 7x + 9 = 0
&& \text{Zero Product Property}
\\
\\
x =& 0 \text{ and } x = \frac{-9}{7}
&& \text{Solve for } x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...