Sunday, August 9, 2015

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 56

Suppose that $x = \ln (\sec \theta + \tan \theta)$, show that $\sec \theta = \cos hx$

We know that

$\cos hx = \frac{e^x + e^{-x}}{2} $ and $ \sec^2 x - \tan^2 x = 1$

then,


$
\begin{equation}
\begin{aligned}

& (\sec x + \tan x)(\sec x - \tan x) = 1
\\
\\
& \sec x - \tan x = \frac{1}{\sec x + \tan x}

\end{aligned}
\end{equation}
$


Taking the $\ln$ from both sides, we have


$
\begin{equation}
\begin{aligned}

e^x =& e^{\ln (\sec \theta + \tan \theta)}
\\
\\
e^x =& \sec \theta + \tan \theta \qquad \text{ Equation 1}
\\
\\
& \text{ and }
\\
\\
e^{-x} =& \frac{1}{\sec \theta + \tan \theta} \text{ or } e^{-x} = \sec \theta - \tan \theta \qquad \text{ Equation 2}


\end{aligned}
\end{equation}
$


Then, we add Equation 1 and Equation 2, so we get


$
\begin{equation}
\begin{aligned}

e^x + e^{-x} =& \sec \theta + \cancel{\tan \theta} + \sec \theta - \cancel{\tan \theta}
\\
\\
e^x + e^{-x} =& 2 \sec \theta
\\
\\
& \text{ or }
\\
\\
\sec \theta =& \cos hx

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...