Saturday, August 22, 2015

Intermediate Algebra, Chapter 3, 3.6, Section 3.6, Problem 38

a.) Solve the equation $x - 4y = 8$ for $y$ in terms of $x$, and rewrite the equation using function notation $f(x)$.


$
\begin{equation}
\begin{aligned}

x - 4y =& 8
&& \text{Given equation}
\\
\\
-4y =& -x + 8
&& \text{Subtract each side by $x$}
\\
\\
y =& \frac{1}{4}x - \frac{8}{4}
&& \text{Divide each side by $-4$}
\\
\\
y =& \frac{1}{4}x - 2


\end{aligned}
\end{equation}
$


So,

$\displaystyle f(x) = \frac{1}{4} x - 2 \qquad y = f(x)$

b.) Find $f(3)$.


$
\begin{equation}
\begin{aligned}

f(3) =& \frac{1}{4} (3) - 2
\qquad \text{Let } x = 3
\\
\\
=& \frac{3}{4} - 2
\\
\\
=& - \frac{5}{4}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...