Wednesday, August 26, 2015

y = x^(coshx) , (1, 1) Find an equation of the tangent line to the graph of the function at the given point

Given
y = x^(coshx) , (1, 1) to find the tangent line equation.
let
y=f(x)
so,
f(x) =x^(coshx)
so let's find f'(x) = (x^(coshx))'
on applying the exponent rule we get,
a^b = e^(b ln(a))
so ,
x^(coshx) = e^(coshx lnx)
so,
f'(x)= ( e^(coshx lnx))'
=d/dx ( e^(coshx lnx))
let u=coshx ln x
so ,
d/dx ( e^(coshx lnx)) = d/ (du) e^u * d/dx (coshx lnx)
= e^u * d/dx (coshx lnx)
=e^u * (sinhx lnx +coshx/x)
=e^(coshx ln x) * (sinhx lnx +coshx/x)
=> x^coshx * (sinhx lnx +coshx/x)
now let us find f'(x) value at (1,1) which is slope
f'(1) = x^cosh(1) (sinh(1) ln(1)+cosh(1)) = x^cosh(1) (0+cosh(1))
 = x^cosh(1) (cosh(1))
now , the slope of the tangent line is x^cosh(1) (cosh(1))
we have the solope and the points so the equation of the tangent line is
y-y1 = slope(x-x1)
y-1=slope(x-1)
y= slope(x-1) +1
 =x^cosh(1) (cosh(1)) (x-1)+1
but x^cosh(1) = e^(cosh(1)ln(1)) = e^0 =1
so,
 
=1 (cosh(1)) (x-1)+1
= xcoshx -coshx +1
so ,
y=xcoshx -coshx +1 is the tangent equation

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...