Sunday, May 1, 2016

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 24

inttan^3(pix/2)sec^2(pix/2)dx
apply integral substitution: u=(pix)/2
=>du=(pi/2)dx
=>dx=(2/pi)du
inttan^3(pix/2)sec^2(pix/2)dx=inttan^3(u)sec^2(u)(2/pi)du
Take the constant out,
=(2/pi)inttan^3(u)sec^2(u)du
Again apply integral substitution: v=tan(u)
=>dv=sec^2(u)du
=2/piintv^3du
Apply the power rule,
=2/pi(v^(3+1)/(3+1))
=2/pi((v^4)/4)
Substitute back v=tan(u) and u=(pix)/2
=1/(2pi)tan^4((pix)/2)
Add a constant C to the solution,
=1/(2pi)tan^4((pix)/2)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...