Saturday, May 14, 2016

Single Variable Calculus, Chapter 3, 3.7, Section 3.7, Problem 25

The equation $\displaystyle \nu = \frac{P}{4\eta \ell}(R^2 - r^2)$ represents the law of Laminar flow.
Where $\eta$ is the viscosity of the blood and $P$ is the pressure difference between the ends of the tube with length $\ell$ and radius $R$. While $r$ is the distance from the axis. Consider a blood vessel with radius 0.01cm, length 3cm, pressure difference $\displaystyle 3000 \frac{\text{dynes}}{\text{cm}^2}$ and viscosity $\eta = 0.027$
a.) Determine the velocity of blood along the centerline $r = 0$, at radius $r = 0.005$cm, and at the wall $r = R = 0.01$cm.
b.) Find the velocity gradient at $r=0$, $r=0.005$, and $r=0.01$
c.) Where is the velocity the greatest? Where is the velocity changing most?


a.) @ $r = 0$


$
\begin{equation}
\begin{aligned}
\nu(r) &= \frac{P}{4\eta \ell} (R^2 - r^2)\\
\\
\nu(0) &= \frac{3000}{4(0.027)(3)}\left( (0.01)^2 - (0)^2\right)\\
\\
\nu(0) &= 0.9259 \frac{cm}{s}
\end{aligned}
\end{equation}
$


@ $r = 0.005$cm


$
\begin{equation}
\begin{aligned}
\nu(0.005) &= \frac{3000}{4(0.027)(3)} \left[ (0.01)^2 - (0.005)^2 \right]\\
\\
\nu(0.005) &= 0.6944 \frac{\text{cm}}{s}
\end{aligned}
\end{equation}
$


@ $r=0.01$cm


$
\begin{equation}
\begin{aligned}
\nu(0.01) &= \frac{3000}{4(0.027)(3)} \left[ (0.01)^2 - (0.01)^2 \right]\\
\\
\nu(0.01) &= 0 \frac{\text{cm}}{s}
\end{aligned}
\end{equation}
$


b.) The velocity gradient $\displaystyle = \frac{d\nu}{dr}$

$
\begin{equation}
\begin{aligned}
\nu &= \frac{P}{4\eta \ell} \left( R^2 - r^2 \right)\\
\\
\nu &= \frac{PR^2}{4 \eta \ell} - \frac{Pr^2}{4 \eta \ell}\\
\\
\frac{d \nu}{dr} &= \frac{d}{dr} \left( \frac{PR^2}{4 \eta \ell}\right) - \frac{P}{4 \eta \ell} \frac{d}{dr} (r^2)\\
\\
\frac{d \nu}{dr} &= 0 - \frac{P}{4\eta \ell} (2r)\\
\\
\frac{d \nu}{dr} &= \frac{-Pr}{ 2 \eta \ell}
\end{aligned}
\end{equation}
$

Velocity gradient at $r=0$

$
\begin{equation}
\begin{aligned}
\frac{d \nu}{dr} &= \frac{-3000 (0)}{2(0.027)(3)}\\
\\
\frac{d \nu}{dr} &= 0 \frac{\frac{\text{cm}}{s}}{\text{cm}}
\end{aligned}
\end{equation}
$

Velocity gradient at $r = 0.005$

$
\begin{equation}
\begin{aligned}
\frac{d \nu}{dr} &= \frac{-3000(0)}{2(0.027)(3)}\\
\\
\frac{d \nu}{dr} &= -92.5926 \frac{\text{cm}/s}{\text{cm}}
\end{aligned}
\end{equation}
$

The velocity gradient at $r = 0.01$

$
\begin{equation}
\begin{aligned}
\frac{d \nu}{dr} &= \frac{-3000(0.01)}{(0.0027)(3)}\\
\\
\frac{d \nu}{dr} &= -185.1852 \frac{\text{cm}/s}{\text{cm}}
\end{aligned}
\end{equation}
$


c.) The velocity is greatest at $r = 0$. While the velocity is changing most (decreasing) at when $r = R = 0.01$cm.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...