Sunday, May 1, 2016

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 2

a.) Determine $y'$ by Implicit Differentiation.
b.) Find the equation explicitly for $y$ and differentiate to get $y'$ in terms of $x$.
c.) Check that your solutions to part (a) and (b) are consistent by substituting the expression for $y$ into your solution for part (a).

a.) Given: $4x^2+9y^2=36$
$\displaystyle \frac{d}{dx} (4x^2) + \frac{d}{dx} (9y^2) = \frac{d}{dx} ( 36 )$
$\displaystyle 4 \frac{d}{dx} (x^2) + 9 \frac{d}{dx}(y^2) = \frac{d}{dx}(36)$
$\displaystyle (4)(2x) + (9) (2y) \left( \frac{dy}{dx}\right) = 0 $

$
\begin{equation}
\begin{aligned}
8 x + (18y) \frac{dy}{dx} & = 0 \\
\\
(18 y) \frac{dy}{dx} & = -8x\\
\\
\frac{\cancel{18y} \frac{dy}{dx}}{\cancel{18y}} & = \frac{-8x}{18y}\\
\\
\frac{dy}{dx} &= \frac{-8x}{18y}\\
\\
\frac{dy}{dx} &= \frac{-4x}{9y} \qquad \text{ or } \qquad y' = \frac{-4x}{9y} && \text{(Equation 1)}
\end{aligned}
\end{equation}
$


b.) Solving for $y$

$
\begin{equation}
\begin{aligned}
9y^2 &= 36-4x^2\\
\\
\frac{\cancel{9}y^2}{\cancel{9}} &= \frac{36-4x^2}{9}\\
\\
y^2 &= \frac{36-4x^2}{9}\\
\\
y &= \pm \sqrt{\frac{36-4x^2}{9}}\\
\\
y &= \pm \frac{\sqrt{4(9-x^2)}}{\sqrt{9}}\\
\\
y &= \pm \frac{2 \sqrt{9-x^2}}{3} && \text{(Equation 2)}\\
\\
\frac{d}{dx} (y) & = \pm \frac{d}{dx} \left( \frac{2\sqrt{9-x^2}}{3} \right)\\
\\
\frac{dy}{dx} & = \pm \left( \frac{2}{3} \right) \frac{d}{dx} (9-x^2)^{\frac{1}{2}}\\
\\
\frac{dy}{dx} & = \pm \left( \frac{\cancel{2}}{3} \right) \left( \frac{1}{\cancel{2}}\right) (9-x^2)^{\frac{-1}{2}} \cdot \frac{d}{dx} (9-x^2)\\
\\
\frac{dy}{dx} & = \pm \frac{1}{3}(9-x^2)^{\frac{-1}{2}} (0-2x)\\
\\
\frac{dy}{dx} & = \pm \frac{1}{3} (9-x^2)^{\frac{-1}{2}} (-2x)\\
\\
\frac{dy}{dx} & = \pm \frac{2x}{3\sqrt{9-x^2}} \qquad \text{ or } \qquad y' = \pm \frac{2x}{3\sqrt{9-x^2}}
\end{aligned}
\end{equation}
$


c.) Substituting Equation 2 in Equation 1

$
\begin{equation}
\begin{aligned}
y' &= \frac{-4x}{9y} && \text{(Equation 1)}\\
\\
y' &= \pm \frac{2}{3} \sqrt{9-x^2} && \text{(Equation 2)}\\
\\
y' &= \frac{-4x}{ 9 \left( \pm \frac{2}{3} \sqrt{9-x^2}\right)}\\
\\
y' &= \frac{4x}{\pm \frac{18}{3} \sqrt{9-x^2}}\\
\\
y' &= \frac{4x}{\pm 6 \sqrt{9-x^2}}\\
\\
y' &= \frac{2x}{3 \sqrt{9-x^2}}
\end{aligned}
\end{equation}
$


Results from part (a) and part (b) are equivalent

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...