Monday, May 2, 2016

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 46

Find all real solutions of the equation $\displaystyle \sqrt{x} - 3 \sqrt[4]{x} - 4 = 0$


$
\begin{equation}
\begin{aligned}

\sqrt{x} - 3 \sqrt[4]{x} - 4 =& 0
&& \text{Given}
\\
\\
(\sqrt[4]{x})^2 - 3 \sqrt[4]{x - 4} =& 0
&& \text{Let } w = \sqrt[4]{x}
\\
\\
(w - 4)(w + 1)=& 0
&& \text{Factor}
\\
\\
w - 4 =& 0 \text{ and } w + 1 = 0
&& \text{Zero Product Property}
\\
\\
w =& 4 \text{ and } w = -1
&& \text{Solve for } w
\\
\\
\sqrt[4]{x} =& 4 \text{ and } \sqrt[4]{x} = -1
&& \text{Substitute } w = \sqrt[4]{x}
\\
\\
(\sqrt[4]{x})^4 =& (4)^4 \text{ and } (\sqrt[4]{x})^4 = (-1)^4
&& \text{Raise both sides by } 4
\\
\\
x =& 256 \text{ and } x = 1
&& \text{Solve for } x
\\
\\
x =& 256
&& \text{The only solution for the equation } \sqrt{x} - 3 \sqrt[4]{x} - 4 = 0

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...