Saturday, May 21, 2016

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 21

Suppose that $f(x) = 3x^2 - 5x$, find $f'(2)$ and use it to find an equation of the tangent line to the parabola $y = 3x^2 - 5x$ at the point $(2,2)$

Using the definition of the derivative of a function $f$ at a number $a$, denoted by $f'(a)$, is

$\qquad \displaystyle \qquad f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$

We have,


$
\begin{equation}
\begin{aligned}

\qquad f'(a) =& \lim \limits_{h \to 0} \frac{3(a + h)^2 - 5 (a + h) - (3a^2 - 5a)}{h}
&& \text{Substitute $f(a + h)$ and $f(a)$}\\
\\
\qquad f'(a) =& \lim \limits_{h \to 0} \frac{\cancel{3a^2} + 6ah + 3h^2 - \cancel{5a} - 5h - \cancel{3a^2} + \cancel{5a}}{h}
&& \text{Expand and combine like terms}\\
\\
\qquad f'(a) =& \lim \limits_{h \to 0} \frac{3h^2 + 6ah - 5h}{h}
&& \text{Factor the numerator}\\
\\
\qquad f'(a) =& \lim \limits_{h \to 0} \frac{\cancel{h}(3h + 6a - 5)}{\cancel{h}}
&& \text{Cancel out like terms}\\
\\
\qquad f'(a) =& \lim \limits_{h \to 0} (3h + 6a - 5) = 3(0) + 6 a - 5
&& \text{Evaluate the limit}\\
\\
\qquad f'(2) =& 6a - 5
&& \text{Substitute the value of $(a)$}\\
\\
f'(2) =& 6(2) - 5
&& \text{Simplify}\\
\\


\end{aligned}
\end{equation}
$


$\qquad \fbox{$f'(2) = 7$} \qquad $ Slope of the tangent line at $(2,2)$

Using Point Slope Form where the tangent line $y = f(x)$ at $(a, f(a))$




$
\begin{equation}
\begin{aligned}

\qquad y - f(a) &= f'(a)(x - a)
&& \\
\\
\qquad y - 2 &= 7(x - 2)
&& \text{Substitute value of $a, f(a)$, and $f'(a)$}\\
\\
\qquad y &= 7x - 14 + 2
&& \text{Combine like terms}

\end{aligned}
\end{equation}
$


$\qquad \fbox{$y = 7x - 12$} \qquad$ Equation of the tangent line at $(2, 2)$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...