Friday, May 27, 2016

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 58

a.) Differentiate the Double-angle Formula $\cos 2x - \cos^2x - \sin^2x$ to obtain the Double-angle Formula for the sine function.


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (\cos 2x) =& \frac{d}{dx} (\cos ^2 x) - \frac{d}{dx} (\sin^2 x)
\\
\\
- \sin 2 x \frac{d}{dx} (2x) =& \frac{d}{dx} (\cos x)^2 - \frac{d}{dx} (\sin x) ^2
\\
\\
- \sin 2 x =& 2 \cos x \frac{d}{dx} (\cos x) - 2 \sin x \frac{d}{dx} (\sin x)
\\
\\
- 2 \sin 2x =& 2 \cos x \sin x - 2 \sin x \cos x
\\
\\
- 2 \sin 2x =& -4 \sin x \cos x
\\
\\
\frac{-\cancel{2} \sin 2x}{-\cancel{2}} =& \frac{-4 \sin x \cos x}{-2}
\\
\\
\sin 2x =& 2 \sin x \cos x

\end{aligned}
\end{equation}
$



b.) Differentiate the Addition Formula $\sin (x + a) = \sin x \cos a + \cos x \sin a $ to obtain the Addition Formula for the cosine function.


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} [\sin (x + a)] =& \frac{d}{dx} (\sin x \cos a) + \frac{d}{dx} (\cos x \sin a)
\\
\\
\cos (x + a) \frac{d}{dx} (x + a) =& \left[ (\sin x) \frac{d}{dx} (\cos a) + (\cos a) \frac{d}{dx} (\sin x) \right] + \left[ \cos x \frac{d}{dx} (\sin a) + (\sin a) \frac{d}{dx} (\cos x)\right]
\\
\\
\cos (x + a)(1) =& [(\sin x) (0) + (\cos a)(\cos x)] + [(\cos x) (0) + (\sin a)(- \sin x)]
\\
\\
\cos (x + a) =& \cos a \cos x + 0 + 0 - \sin a \sin x
\\
\\
\cos (x + a) =& \cos x \cos a - \sin x \sin a

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...