Thursday, December 29, 2016

Calculus: Early Transcendentals, Chapter 4, Review, Section Review, Problem 68

You need to evaluate the function f using the provided information, hence, you need to apply the antiderivative, such that:
int (f'(x) sinhx + 2cosh x)dx = int (f'(x)(e^x - e^(-x))/2) + (e^x + e^(-x)))dx
int (f'(x) sinhx + 2cosh x)dx = (1/2)int (f'(x)(e^x)dx - (1/2)int f'(x) e^(-x)dx + int e^x dx + int e^(-x)dx
You need to evaluate each of the two integrals separately. You may integrate int (f'(x)(e^x)dx using integration by parts. You may consider u = e^x and dv = f'(x), such that:
int udv = uv - int vdu
u = e^x => du = e^x
dv = f'(x) => v = f(x)
int f'(x) e^x dx = f(x) e^x - int f(x)e^x => (1/2)int f'(x) e^x dx = (1/2)f(x) e^x - (1/2)int f(x)e^x
(1/2)int f'(x) e^(-x)dx = (1/2)f(x)e^(-x) + (1/2)int e(-x)f(x) dx
u = e^(-x) => du = -e^(-x)
dv = f'(x) => v = f(x)
(1/2)int (f'(x)(e^x)dx - (1/2)int f'(x) e^(-x)dx= (1/2)f(x) e^x - (1/2)int f(x)e^x - (1/2)f(x)e^(-x) - (1/2)int e(-x)f(x) dx
int e^x dx + int e^(-x)dx = e^x - e^(-x) + c
Hence, evaluating the integral, yields:
int (f'(x) sinhx + 2cosh x)dx = (1/2)f(x) e^x - (1/2)int f(x)e^x - (1/2)f(x)e^(-x) - (1/2)int e^(-x)f(x) dx + e^x - e^(-x) + c
int (f'(x) sinhx + 2cosh x)dx = (1/2)f(x)(e^x - e^(-x)) - (1/2)int (f(x)e^x -e(-x)f(x))dx + e^x - e^(-x) + c
int (f'(x) sinhx + 2cosh x)dx = f(x)sinh x - int f(x) sinh x + 2sinhx + c
Given the provided information, this is the answer for the antiderivative int (f'(x) sinhx + 2cosh x)dx = f(x)sinh x - int f(x) sinh x + 2sinhx + c.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...