Friday, December 9, 2016

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 48

Solve the system $\left\{\begin{equation}
\begin{aligned}

x + y =& 1
\\
y + z =& 2
\\
z + w =& 3
\\
w - x =& 4

\end{aligned}
\end{equation} \right.$ using Cramer's Rule.

For this system we have

$\displaystyle |D| = \left| \begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 0 & 1
\end{array} \right| $

If we add row 1 to row 4, we get

$\displaystyle \left| \begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array} \right| $

So,

$|D| = 1 \left| \begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array} \right| - 1 \left| \begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array} \right|$

Now, we add -1 times row 1 to row 3 in the first matrix, we have


$
\begin{equation}
\begin{aligned}

|D| =& 1 \left| \begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array} \right| - 1 \left| \begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array} \right| \qquad \text{Expand}
\\
\\
|D| =& (1)(1) \left| \begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array} \right| - (1)(1) \left| \begin{array}{cc}
0 & 1 \\
0 & 1
\end{array} \right| - (1)(-1) \left| \begin{array}{cc}
0 & 1 \\
0 & 1
\end{array} \right| + (1)(1) \left| \begin{array}{cc}
0 & 0 \\
0 & 1
\end{array} \right|
\\
\\
|D| =& 1 \cdot 1 - 1 \cdot (-1)
\\
\\
|D| =& 2

\end{aligned}
\end{equation}
$


For $D_x$,

$\displaystyle |D_x| = \left| \begin{array}{cccc}
1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
3 & 0 & 1 & 1 \\
4 & 0 & 0 & 1
\end{array} \right|$

If we add -1 times row 1 to row 2, we get

$\displaystyle \left| \begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 \\
4 & 0 & 0 & 1
\end{array} \right|$

So,

$\displaystyle |D_x| = 1 \left| \begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array} \right| - 1 \left| \begin{array}{ccc}
1 & 1 & 0 \\
3 & 1 & 1 \\
4 & 0 & 1
\end{array} \right|$

Now, applying -1 times row 1 to row 2 in the second matrix and since the first matrix is equal to zero, this gives us


$
\begin{equation}
\begin{aligned}

|D_x| =& -1 \left| \begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 1 \\
4 & 0 & 1
\end{array} \right|
\qquad \text{Expand}
\\
\\
=& -1(1) \left| \begin{array}{cc}
0 & 1 \\
0 & 1
\end{array} \right| - (1)(-1) \left| \begin{array}{cc}
2 & 1 \\
4 & 1
\end{array} \right|
\\
\\
=& 2 \cdot 1 - 4 \cdot 1
\\
\\
=& -2

\end{aligned}
\end{equation}
$


For $D_y$

$\displaystyle |D_y| = \left| \begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 3 & 1 & 1 \\
-1 & 4 & 0 & 1
\end{array} \right|$

If we add row 1 to row 4, we get

$\displaystyle \left| \begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 3 & 1 & 1 \\
0 & 5 & 0 & 1
\end{array} \right|$

So,

$\displaystyle |D_y| = 1 \left| \begin{array}{ccc}
2 & 1 & 0 \\
3 & 1 & 1 \\
5 & 0 & 1
\end{array} \right| - 1 \left| \begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array} \right|$

Now, since the second matrix is equal to zero. We add -1 times row 1 to row 2 in the first matrix. We have,


$
\begin{equation}
\begin{aligned}

|D_y| =& 1 \left| \begin{array}{ccc}
2 & 1 & 0 \\
1 & 0 & 1 \\
5 & 0 & 1
\end{array} \right| \qquad \text{Expand}
\\
\\
=& 1 (2) \left| \begin{array}{cc}
0 & 1 \\
0 & 1
\end{array} \right| - 1 \left| \begin{array}{cc}
1 & 1 \\
5 & 1
\end{array} \right|
\\
\\
=& -1 (1 \cdot 1 - 1 \cdot 5)
\\
\\
=& 4

\end{aligned}
\end{equation}
$


For $D_z$,

$\displaystyle |D_z| = \left| \begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 3 & 1 \\
-1 & 0 & 4 & 1
\end{array} \right|$

If we add row 1 to row 4, we get

$\displaystyle \left| \begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 3 & 1 \\
0 & 1 & 5 & 1
\end{array} \right|$

So,

$\displaystyle |D_z| = 1 \left| \begin{array}{ccc}
1 & 2 & 0 \\
0 & 3 & 1 \\
1 & 5 & 1
\end{array} \right| - 1\left| \begin{array}{ccc}
0 & 2 & 0 \\
0 & 3 & 1 \\
0 & 5 & 1
\end{array} \right| + 1 \left| \begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array} \right|$

Since the second and third matrix are equal to zero, we can disregard it. Then if we add -1 times row 1 to row 3 in the first matrix. We have


$
\begin{equation}
\begin{aligned}

|D_z| =& 1 \left| \begin{array}{ccc}
1 & 2 & 0 \\
0 & 3 & 1 \\
0 & 3 & 1
\end{array} \right| \qquad \text{Expand}
\\
\\
=& 1 (1) \left| \begin{array}{cc}
3 & 1 \\
3 & 1
\end{array} \right| - 1(2) \left| \begin{array}{cc}
0 & 1 \\
0 & 1
\end{array} \right|
\\
\\
=& 3 \cdot 1 - 3 \cdot 1
\\
\\
=& 0


\end{aligned}
\end{equation}
$


For $D_w$

$\displaystyle |D_w| = \left| \begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 3 \\
-1 & 0 & 0 & 4
\end{array} \right|$

If we add row 1 to row 4, we get

$\displaystyle \left| \begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 3 \\
0 & 1 & 0 & 5
\end{array} \right|$

So,

$\displaystyle |D_w| = 1 \left| \begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & 3 \\
1 & 0 & 5
\end{array} \right| - 1 \left| \begin{array}{ccc}
0 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 5
\end{array} \right| - 1 \left| \begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right|$

Since the second and third matrix are both equal to zero. Then we can disregard it. If we add -1 times row 1 to row 3, we have


$
\begin{equation}
\begin{aligned}

|D_w| =& 1 \left| \begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & -1 & 3
\end{array} \right| \qquad \text{Expand}
\\
\\
=& 1(1) \left| \begin{array}{cc}
1 & 3 \\
-1 & 3
\end{array} \right| - 1(1) \left| \begin{array}{cc}
0 & 3 \\
0 & 3
\end{array} \right| + 2 \left| \begin{array}{cc}
0 & 1 \\
0 & 0
\end{array} \right|
\\
\\
=& 1 \cdot 3 - 3 \cdot (-1)
\\
\\
=& 6

\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

x =& \frac{|D_x|}{|D|} = \frac{-2}{2} = -1
\\
\\
y =& \frac{|D_y|}{|D|} = \frac{4}{2} = 2
\\
\\
z =& \frac{|D_z|}{|D|} = \frac{0}{2} = 0
\\
\\
w =& \frac{|D_w|}{|D|} = \frac{6}{2} = 3

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...