Wednesday, December 28, 2016

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 38

At what rate is the beam of light moving along the shore line when it is 1km from P






Using the tangent function
$\displaystyle \tan \theta = \frac{y}{3}$ ; when $\displaystyle y = 1 ; \theta = \tan^{-1}\left[ \frac{1}{3} \right] = 18.4349^{\circ}$
Taking the derivative with respect to time we have


$
\begin{equation}
\begin{aligned}
\sec^ \theta \frac{d \theta}{dt} &= \frac{\frac{dy}{dt}}{3}\\
\\
\frac{dy}{dt} &= 3\sec^2 \theta \frac{d \theta}{dt} && \text{ Equation 1}
\end{aligned}
\end{equation}
$


Also,
$\displaystyle \frac{d \theta}{dt} = \frac{4\cancel{\text{rev}}}{\text{min}} \left( \frac{2 \pi \text{rad}}{\cancel{\text{rev}}}\right) = 8 \pi \frac{\text{rad}}{\text{min}}$

Plugging all the values in Equation 1 we have,

$
\begin{equation}
\begin{aligned}
\frac{dy}{dt} &= 3 \sec^2 (18.4349^{\circ}) \left( 8 \pi \frac{\text{rad}}{\text{min}}\right)\\
\\
\frac{dy}{dt} &= \frac{80 \pi}{3} \frac{\text{km}}{\text{min}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...