Thursday, December 29, 2016

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 26

Evaluate the function $\displaystyle f(x) = \frac{|x|}{x}$ at $f(-2), \quad f(-1), \quad f(0), f(x^2),\quad f\left( \frac{1}{x} \right), \quad f(5)$
For $f(-2)$

$
\begin{equation}
\begin{aligned}
f(-2) &= \frac{|2|}{-2} && \text{Replace } x \text{ by } -2\\
\\
&= \frac{2}{-2} && \text{Simplify}\\
\\
&= -1
\end{aligned}
\end{equation}
$


For $f(-1)$

$
\begin{equation}
\begin{aligned}
f(-1) &= \frac{|-1|}{-1} && \text{Replace } x \text{ by } -1\\
\\
&= \frac{1}{-1} && \text{Simplify}\\
\\
&= -1
\end{aligned}
\end{equation}
$


For $f(0)$

$
\begin{equation}
\begin{aligned}
f(0) &= \frac{|0|}{0} && \text{Replace } x \text{ by } 0\\
\\
f(0) &= \text{Undefined}
\end{aligned}
\end{equation}
$


For $f(x^2)$

$
\begin{equation}
\begin{aligned}
f(x^2) &= \frac{|x^2|}{-2} && \text{Replace } x \text{ by } x^2\\
\\
&= \frac{x^2}{x^2} && \text{Simplify}\\
\\
&= 1
\end{aligned}
\end{equation}
$


For $f\left( \frac{1}{x} \right)$

$
\begin{equation}
\begin{aligned}
f\left( \frac{1}{x} \right) &= \frac{\left|\frac{1}{x}\right|}{\frac{1}{x}} && \text{Replace } x \text{ by } \frac{1}{x}\\
\\
&= x\left|\frac{1}{x}\right|
\end{aligned}
\end{equation}
$



For $f(5)$

$
\begin{equation}
\begin{aligned}
f(5) &= \frac{|5|}{5} && \text{Replace } x \text{ by }5\\
\\
&= \frac{5}{5} && \text{Simplify}\\
\\
&= 1
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...