Friday, December 30, 2016

int (x-2) / ((x+1)^2 + 4) dx Find the indefinite integral

We have to evaluate the integral:\int \frac{x-2}{(x+1)^2+4}dx
Let x+1=u
So, dx=du
Hence we have,
\int \frac{x-2}{(x+1)^2+4}dx=\int \frac{u-3}{u^2+4}du
                       =\int \frac{u}{u^2+2^2}du-\int\frac{3}{u^2+2^2}du
                       
First we will evaluate \int \frac{u}{u^2+4}du
Let u^2+4=t
So, 2udu=dt
Therefore we can write,
\int \frac{u}{u^2+4}du=\int \frac{dt}{2t}
                =\frac{1}{2}ln(t)
                 =\frac{1}{2}ln(u^2+4)
 
Now we will evaluate,  \int \frac{3}{u^2+4}du
\int \frac{3}{u^2+2^2}du=\frac{3}{2}tan^{-1}(\frac{u}{2})
 
Therefore we have,
\int \frac{x-2}{(x+1)^2+4}dx=\frac{1}{2}ln(u^2+4)-\frac{3}{2}tan^{-1}(\frac{u}{2})+C
                       =\frac{1}{2}ln((x+1)^2+4)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C
                        =\frac{1}{2}ln(x^2+2x+5)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...