Thursday, December 22, 2016

sum_(n=0)^oo (2x)^n Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

Recall the Root test determines the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or 
lim_(n-gtoo) |(a_n)|^(1/n)= L
Then, we follow the conditions:
a) Llt1 then the series is absolutely convergent
b) Lgt1 then the series is divergent.
c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
For the given series sum_(n=0)^oo (2x)^n , we have a_n = (2x)^n .
Applying the Root test, we set-up the limit as:
lim_(n-gtoo) |((2x)^n )^(1/n)| =lim_(n-gtoo) |(2x)^(n*1/n)|
                                  =lim_(n-gtoo) |(2x)^(n/n)|
                                  =lim_(n-gtoo) |(2x)^1|
                                  =lim_(n-gtoo) |(2x)|
                                  =|2x|
Applying  Llt1 as the condition for an absolutely convergent series, we let L=|2x| and set-up the interval of convergence as:
|2x|lt1
-1 lt2xlt1
Divide each part by 2:
(-1)/2 lt(2x)/2lt1/2
-1/2ltxlt1/2
The series may converges when L =1 or |2x|=1 . To check on this, we test for convergence at the endpoints: x=-1/2 and x=1/2 by using geometric series test.
The convergence test for the geometric series sum_(n=0)^oo a*r^n  follows the conditions:
a) If |r|lt1  or -1 ltrlt 1 then the geometric series converges to a/(1-r) .
b) If |r|gt=1 then the geometric series diverges.
When we let x=-1/2 on sum_(n=0)^oo (2*(1/2))^n , we get a series:
sum_(n=0)^oo 1*(-2/2)^n =sum_(n=0)^oo 1*(-1)^n
 
It shows that r=-1 and |r|= |-1|=1 which satisfies |r|>=1. The series diverges at the left endpoint.
When we let x=1/2 on sum_(n=0)^oo (2*1/2)^n , we get a series:
sum_(n=0)^oo 1*(2/2)^n =sum_(n=0)^oo 1*(1)^n
It shows that r=1 and |r|= |-1|=1 which satisfies |r|gt=1 . The series diverges at the right endpoint.
Conclusion:
The interval of convergence of the power series sum_(n=0)^oo (2x)^n is -1/2ltxlt1/2 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...