Friday, May 26, 2017

Beginning Algebra With Applications, Chapter 3, 3.3, Section 3.3, Problem 142

Evaluate $2(m + 7) \leq 4[3(m- 2)-5(1 + m)]$

$
\begin{equation}
\begin{aligned}
2(m) + 2(7) &\leq 4 [3(m) - 3(2) - 5(1) + (-5)(m)] && \text{Use the Distributive Property to remove the parenthesis}\\
\\
2m + 14 &\leq 4 [3m - 6 - 5 - 5m] && \text{Evaluate}\\
\\
2m + 14 &\leq 4 [ -2m - 11] && \text{Combine like terms inside the bracket}\\
\\
2m + 14 &\leq 4(-2m) - 4(11) && \text{Again, apply Distributive Property}\\
\\
2m + 14 &\leq -8m - 44 && \text{Simplify}\\
\\
2m + 8m &\leq - 44 - 14 && \text{Group terms}\\
\\
10m &\leq -58 && \text{Combine like terms}\\
\\
\frac{10m}{10} &\leq \frac{-58}{10} && \text{Divide each side by 10}\\
\\
m &\leq -\frac{58}{10}\\
\\
m &\leq -\frac{29}{5}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...