Wednesday, May 3, 2017

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 50

Find all real solutions of the equation $\displaystyle x^{\frac{1}{2}} + 3x^{\frac{-1}{2}} = 10x^{\frac{-3}{2}}$


$
\begin{equation}
\begin{aligned}

x^{\frac{1}{2}} + 3x^{\frac{-1}{2}} =& 10x^{\frac{-3}{2}}
&& \text{Given}
\\
\\
x^{\frac{1}{2}} + 3x^{\frac{-1}{2}} - 10x^{\frac{-3}{2}} =& 0
&& \text{Subtract } 10x^{\frac{-3}{2}}
\\
\\
x^{\frac{1}{2}} + \frac{3}{x^{\frac{1}{2}}} - \frac{10}{x^{\frac{3}{2}}} =& 0
&& \text{Multiply both sides by } x^{\frac{3}{2}}
\\
\\
x^{\frac{1}{2}} \cdot x^{\frac{3}{2}} + \frac{3x^{\frac{3}{2}}}{x^{\frac{1}{2}}} - 10 =& 0
&& \text{Use the Properties of Exponents}
\\
\\
x^2 + 3x - 10 =& 0
&& \text{Factor}
\\
\\
(x + 5)(x - 2) =& 0
&& \text{Zero Product Property}
\\
\\
x + 5 =& 0 \text{ and } x - 2 = 0
&& \text{Solve for } x
\\
\\
x =& -5 \text{ and } x = 2
&&
\\
\\
x =& 2
&& \text{The only solution that satisfy the equation}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...