Sunday, May 28, 2017

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 14

Solve the system of equations $
\begin{equation}
\begin{aligned}

x + 2y + 3z =& 1 \\
-x - y + 3z =& 2 \\
-6x + y + z =& -2

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

x + 2y + 3z =& 1
&& \text{Equation 1}
\\
-x - y + 3z =& 2
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{x -} y + 6z =& 3
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

6x + 12y + 18z =& 6
&& 6 \times \text{Equation 1}
\\
-6x + y + z =& -2
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{6x + } 13y + 19z =& 4
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

y + 6z =& 3
&& \text{Equation 4}
\\
13y + 19z =& 4
&& \text{Equation 5}

\end{aligned}
\end{equation}
$


We write the equations in two variables as a system


$
\begin{equation}
\begin{aligned}

-13y - 78z =& -39
&& -13 \times \text{ Equation 4}
\\
13y + 19z =& 4
&&
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{13y } -59z =& -35
&& \text{Add}
\\
z =& \frac{35}{59}
&& \text{Divide each side by $-59$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

y + 6 \left( \frac{35}{59} \right) =& 3
&& \text{Substitute } z = \frac{35}{59} \text{ in Equation 4}
\\
\\
y + \frac{210}{59} =& 3
&& \text{Multiply}
\\
\\
y =& - \frac{33}{59}
&& \text{Subtract each side by } \frac{210}{59}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

x + 2 \left( - \frac{33}{59} \right) + 3 \left( \frac{35}{59} \right) =& 1
&& \text{Substitute } y = \frac{33}{59} \text{ and } z = \frac{35}{59}
\\
\\
x - \frac{66}{59} + \frac{105}{59} =& 1
&& \text{Multiply}
\\
\\
x + \frac{39}{59} =& 1
&& \text{Combine like terms}
\\
\\
x =& \frac{20}{59}
&& \text{Subtract each side by } \frac{171}{59}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( \frac{20}{59}, - \frac{33}{59}, \frac{35}{59} \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...