Monday, May 22, 2017

y=lnx , [1,5] Find the arc length of the curve over the given interval.

 Arc length of curve can be denoted as "S ". We can determine it by using integral formula on a closed interval [a,b] as: S = int_a^b ds
where:
ds = sqrt(1+ ((dy)/(dx))^2 )dx   if y=f(x)
or
ds = sqrt(1+((dx)/(dy))^2) dy if x=h(y)
a = lower boundary of the closed interval
b =upper boundary of the closed interval
 
From the given problem: y =ln(x), [1,5] , we determine that the boundary values are:
a= 1 and b=5
Note that y= ln(x) follows y=f(x) then the formula we will follow can be expressed as S =int_a^bsqrt(1+ ((dy)/(dx))^2 )dx
For the derivative of  y or (dy)/(dx) , we apply the derivative formula for logarithm:
d/(dx)y= d/(dx) ln(x)
(dy)/(dx)= 1/x
 Then ((dy)/(dx))^2= (1/x)^2  or 1/x^2 .
Plug-in the values  on integral formula for arc length of a curve, we get:
S =int_1^5sqrt(1+1/x^2 )dx
Let 1 = x^2/x^2 then we get:
S=int_1^5sqrt(x^2/x+1/x^2 )dx
    =int_1^5sqrt((x^2+1)/x^2 )dx
    =int_1^5sqrt(x^2+1)/sqrt(x^2 )dx
    =int_1^5sqrt(x^2+1)/sqrt(x^2 )dx
    =int_1^5sqrt(x^2+1)/xdx
From the integration table,  we follow the formula for rational function with roots:
int sqrt(x^2+a^2)/x dx = sqrt(x^2+a^2)-a*ln|(a+sqrt(x^2+a^2))/x| .
Applying the integral formula with a^2=1 then a=1, we get:
int_1^5sqrt(x^2+1)/xdx = [sqrt(x^2+1)-1*ln|(1+sqrt(x^2+1))/x|]|_1^5
                     = [sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5
Apply the definite integral formula: F(x)|_a^b= F(b)-F(a) .
[sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5
=[sqrt(5^2+1)-ln|(1+sqrt(5^2+1))/5|]-[sqrt(1^2+1)-ln|(1+sqrt(1^2+1))/1|]
=[sqrt(25+1)-ln|(1+sqrt(25+1))/5|]-[sqrt(1+1)-ln|(1+sqrt(1+1))/1|]
=[sqrt(26)-ln|(1+sqrt(26))/5|]-[sqrt(2)-ln|1+sqrt(2)|]
=sqrt(26)-ln|(1+sqrt(26))/5| -sqrt(2)+ln|1+sqrt(2)|
Apply logarithm property: ln(x)-ln(y) = ln(x/y) .
S =sqrt(26)-sqrt(2)+ln|1+sqrt(2)|-ln|(1+sqrt(26))/5|
S =sqrt(26)-sqrt(2)+ln|(1+sqrt(2))/(((1+sqrt(26))/5))|
S =sqrt(26)-sqrt(2)+ln|(5*(1+sqrt(2)))/(1+sqrt(26))|
S =sqrt(26)-sqrt(2)+ln|(5+5sqrt(2))/(1+sqrt(26))| 
S~~4.37

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...