This is an ordinary differential equation as it involves derivatives in the parameter y only. It is also nonlinear because the equation combines y and the derivative in y in a nonlinear fashion. In particular, there is a y/(1+y) term which is nonlinear in y. Finally it is first order as it involves y and only the first derivative of y and no further higher order derivatives (2nd, 3rd etc). Putting that all together we have that this is a First order nonlinear ordinary differential equation. Now we know what we're dealing with!
To solve differential equations of this type (the method extends to some other types, but let's focus on the type we have here), move terms involving y and its derivatives to the lefthand side, and terms involving x to the righthand side. It is convenient to rewrite y' as dy/dx as this separates this derivate into parts associated with y and x separately ('d' represents 'delta' - meaning, a tiny change in the variable). So, gather terms and write the equation as
(y+1)/y quad dy = xsinx quad dx
I've written the dy and dx slightly apart from the other parts of the equation to emphasise that these are single entities.
Now, the trick is to integrate on both sides. This seems unnatural at first, but note we are doing the same thing to both sides just like with any equation. What we have already is the areas under two separate curves, one in y and one in x, defined by multiplying the function at any point by a minuscule width. This is essentially a set of instructions of how to add up many very small columns under the curve. And the integral sign is the action of getting the areas under the curves, eliminating the tiny widths, using those instructions. So, adding the integral sign we write
int (y+1)/y quad dy = int xsinx quad dx
giving
int 1 + 1/y quad dy = int xsinx quad dx
The integral on the left is a simple one. The integral on the right is less simple, and needs to be done by parts. I will just give the solution to that, which you can work through. So, we have
y + lny = -xcosx + sinx + c
where c is a constant of integration.
This is very nearly a solution, but we can now use the initial condition y(0) =1 to find the value of c . The initial condition tells us that
-0(cos(0)) + sin(0) + c = 1 which gives that
0 + c = 1 implies c = 1
The final solution to the differential equation is then
y + lny = -xcosx + sinx + 1
Note this is an implicit and not explicit solution since y is not fully isolated by itself on the left side of the equation. This, I believe, is the only way to write this equation that involves only the variables y and x.
Monday, May 29, 2017
Calculus: Early Transcendentals, Chapter 9, 9.3, Section 9.3, Problem 14
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment