Thursday, March 29, 2018

int sin(sqrt(theta)) / sqrt(theta) d theta Find or evaluate the integral

int (sin sqrt theta)/sqrt theta d theta
To solve, apply u-substitution method.

u=sqrt theta
u= theta ^(1/2)
du = 1/2 theta^(-1/2) d theta
du = 1/(2theta^(1/2))d theta
du =1/(2 sqrt theta) d theta
2du =1/sqrt theta d theta

Expressing the integral in terms of u, it becomes:
= int sin (sqrt theta) * 1/sqrt theta d theta
= int sin (u) * 2du
= 2 int sin (u) du
Then, apply the integral formula int sin (x) dx = -cos(x) + C .
= 2*(-cos (u)) + C
= -2cos(u) + C
And, substitute back  u = sqrt theta .
= -2cos( sqrt theta) + C
 
Therefore, int (sin sqrt theta)/sqrt theta d theta= -2cos( sqrt theta) + C .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...