Sunday, March 25, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 6

Determine the integral $\displaystyle \int \frac{\sin^3 (\sqrt{x})}{\sqrt{x}} dx$

Let $u = \sqrt{x}$, then $\displaystyle du = \frac{1}{2 \sqrt{x}} dx$, so $\displaystyle \frac{1}{\sqrt{x}} dx = 2du$. Thus,


$
\begin{equation}
\begin{aligned}

\int \frac{\sin^3 (\sqrt{x})}{\sqrt{x}} dx =& int \sin^3 (\sqrt{x}) \cdot \frac{1}{\sqrt{x}} dx
\\
\\
\int \frac{\sin^3 (\sqrt{x})}{\sqrt{x}} dx =& \int \sin^3 u \cdot 2du
\\
\\
\int \frac{\sin^3 (\sqrt{x})}{\sqrt{x}} dx =& 2 \int \sin^3 u du
\\
\\
\int \frac{\sin^3 (\sqrt{x})}{\sqrt{x}} dx =& 2 \int \sin^2 u \sin u du
\qquad \text{Apply Trigonometric Idendities } \sin^2 x = 1 - \cos^2 x
\\
\\
\int \frac{\sin^3 (\sqrt{x})}{\sqrt{x}} dx =& 2 \int (1 - \cos^2 u) \sin u du

\end{aligned}
\end{equation}
$


Let $v = \cos u$, then $dv = - \sin u du$, so $\sin u du = -dv$. Thus,


$
\begin{equation}
\begin{aligned}

2 \int (1 - \cos^2 u) \sin u du =& 2 \int (1 - v^2) \cdot -dv
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& - 2 \int (1 - v^2) dv
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& -2 \left( v - \frac{v^{2 + 1}}{2 + 1} \right) + c
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& -2 \left( v - \frac{v^3}{3} \right) + c
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& -2 \left( \cos u - \frac{\cos ^3 u}{3} \right) + c
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& -2 \left[ \cos (\sqrt{x}) - \frac{\cos^3 (\sqrt{x})}{3} \right] + c
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& -2 \cos (\sqrt{x}) + \frac{2 \cos^3 (\sqrt{x})}{3} + c
\\
\\
\text{or} &
\\
\\
2 \int (1 - \cos^2 u) \sin u du =& \frac{2 \cos ^3 (\sqrt{x})}{3} - 2 \cos (\sqrt{x}) + c

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...