Friday, March 16, 2018

Single Variable Calculus, Chapter 8, 8.3, Section 8.3, Problem 34

Determine the area of the region bounded by the hyperbola $9x^2 - 4y^2 = 36$ and the line $ x= 3$



By using vertical strips, Since the graph above the $x$-axis is the same as the graph below $x$-axis, we can multiply the area above the $x$-axis by 2 to get the area of the entire bounded region. So,


$
\begin{equation}
\begin{aligned}
A &= 2 \int^b_a \left( y_{\text{upper}} - u_{\text{lower}} \right) dx\\
\\
A &= 2 \int^3_2 \left( \sqrt{\frac{9x^2 - 36}{4}} - 0 \right) dx\\
\\
A &= 2 \int^3_2 \left( \frac{1}{2} \right) \sqrt{9x^2 - 36} dx\\
\\
A &= \int^3_2 \sqrt{9(x^2-4)} dx\\
\\
A &= 3 \int^3_2 \sqrt{x^2 - 4} dx
\end{aligned}
\end{equation}
$


From the triangle,



$
\begin{equation}
\begin{aligned}
\cos \theta &= \frac{2}{x} \qquad \text{and} \qquad \tan \theta = \frac{\sqrt{x^2 - 4}}{2}\\
\\
x &= \frac{2}{\cos \theta} = 2 \sec \theta\\
\\
dx &= 2 (\sec \theta \tan \theta) d \theta
\end{aligned}
\end{equation}
$


Thus,

$
\begin{equation}
\begin{aligned}
A = 3 \int \sqrt{x^2-4} dx &= 3 \int (2 \tan \theta) (2 \sec \theta \tan \theta) d \theta\\
\\
&= 12 \int \sec \theta \tan^2 \theta d \theta
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int \sec \theta \tan \theta d \theta$,
Recall that $\tan^2 \theta = \sec^2 \theta - 1$

$
\begin{equation}
\begin{aligned}
\int \sec \theta \tan^2 \theta d \theta &= \int \sec \theta (\sec^2 \theta - 1) d \theta\\
\\
\int \sec \theta \tan^2 \theta d \theta &= \int \left( \sec^3 \theta - \sec \theta \right) d\theta\\
\\
\int \sec \theta \tan^2 \theta d \theta &= \sec^3 \theta d \theta - \int \sec \theta d \theta
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int sec^3 \theta d \theta$, we will use $u = \sec \theta$ and $dv = \sec^2 \theta d \theta$, then
$du = \sec \theta \tan \theta d \theta$ and $\displaystyle v = \int \sec^2 \theta d \theta = \tan \theta$

So,
$\displaystyle \int \sec^3 \theta d \theta = uv - \int v du = \sec \theta \tan \theta - \int \sec \theta \tan^2 \theta d \theta$

Going back from the previous equation,

$
\begin{equation}
\begin{aligned}
\int \sec \theta \tan^2 \theta d \theta &= \int \sec^3 \theta d \theta - \int \sec \theta d \theta\\
\\
\int \sec \theta \tan^2 \theta d \theta &= [\sec \theta \tan \theta - \int \sec \tan^2 \theta d \theta] - \ln (\sec \theta + \tan \theta)

\end{aligned}
\end{equation}
$


By combining like terms,

$
\begin{equation}
\begin{aligned}
2 \int \sec \theta \tan^2 \theta d \theta &= \sec \theta \tan \theta - \ln (\sec \theta + \tan \theta)\\
\\
\int \sec \theta \tan^2 \theta d \theta &= \frac{\sec \theta \tan \theta - \ln (\sec \theta + \tan \theta)}{2}
\end{aligned}
\end{equation}
$


Therefore,

$
\begin{equation}
\begin{aligned}
12 \int \sec \theta \tan^2 \theta d \theta &= 12 \left[ \frac{\sec \theta \tan \theta - \ln (\sec \theta + \tan \theta)}{2} \right]\\
\\
&= \left[ 6 \sec\theta \tan\theta - 6 \ln (\sec \theta + \tan \theta ) \right]^b_a
\end{aligned}
\end{equation}
$


From the triangle,

$
\begin{equation}
\begin{aligned}
12 \int \sec \theta \tan^2 \theta d \theta &= \left[6 \left( \frac{x}{2} \right)\left( \frac{\sqrt{x^2-4}}{2} \right) - 6 \ln \left( \frac{x}{2} + \frac{\sqrt{x^2-4}}{2} \right) \right]^3_2\\
\\
&= \left[ \frac{3}{2} x \sqrt{x^2 - 4} - 6 \ln \left( \frac{x+\sqrt{x^2-4}}{2} \right) \right]\\
\\
&= \frac{9}{2} \sqrt{5} - 6 \ln \left( \frac{3+\sqrt{5}}{2} \right) \text{ square units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...