Saturday, March 31, 2018

Solve the integral int 8/(16-x^) dx

Solve int 8/(16-x^2)dx
Factor the denominator and pull the 8 outside the integral.
=8int 1/((4-x)(x+4))dx
Preform partial fraction decomposition on 1/((4-x)(x+4)) .
1/((4-x)(x+4))=A/(4-x)+B/(x+4)
1=A(x+4)+B(x-4)
1=Ax+4A+Bx-4B
1=(A+B)x+4(A-B)
Sine the left hand coefficients must be equal to the right hand side coefficients, (A+B) must be equal to zero to make x vanish and 4(A-B) must equal 1 .
A+B=0
A=-B
1=4(A-B)
1/4=A-B
1/4=2A
1/8=A, -1/8=B
Then the integral becomes:
=8int (1/8)[1/(4-x) -1/(x+4)]dx
=int 1/(4-x)dx-int 1/(x+4)dx
Use u-substitution on the first integral.
4-x=u , and du=-dx
on the 2nd integral.
x+4=v , dv=dx
=-int 1/(u)du-int 1/(v)dv
=-ln|u|-ln|v|+C
=-ln|4-x|-ln|x+4|+C
=-ln((4-x)/(x+4))+C
=ln(((4-x)/(x+4))^-1)+C
Then finally,
int 8/(16-x^2)dx=ln((x+4)/(4-x))+C
https://www.purplemath.com/modules/partfrac.htm

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...