Saturday, March 17, 2018

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 90

Find a formula for $\frac{d^3}{dx^3}$ having $y = f(u)$ and $u = g(x)$ where $f$ and $g$ possess third derivatives. Recall that $\displaystyle \frac{d^2y}{dx^2} = \frac{d^2y}{du^2} \left( \frac{du}{dx} \right)^2 + \frac{dy}{du} \left( \frac{d^2u}{dx^2} \right) $

Using Chain Rule,

$\displaystyle \frac{d^3y}{dx^2} = \left[ \frac{d}{dx} \left( \frac{d^2y}{du^2} \right) \cdot \left( \frac{du}{dx} \right)^2 \right] + \left[ \frac{d^2y}{du^2} \cdot \frac{d}{dx} \left( \frac{du}{dx} \right)^2 \right] + \left[ \frac{d}{dx} \left( \frac{d}{du} \right) \cdot \frac{d^2u}{dx^2} \right] + \left[ \frac{dy}{du} \cdot \frac{d}{dx} \left( \frac{d^2u}{dx^2} \right) \right]$

For the first bracket,

$\displaystyle \frac{d}{dx} \left( \frac{d^2y}{du^2} \right) = \frac{d}{du} \left( \frac{d^2y}{du^2} \right) \left( \frac{du}{dx} \right) = \frac{d^3y}{du^3} \left( \frac{du}{dx} \right)$

For the second bracket,

$\displaystyle \frac{d}{dx} \left( \frac{du}{dx} \right) ^2 = 2 \left( \frac{du}{dx} \right)' \cdot \frac{d}{dx} \left( \frac{du}{dx} \right) = 2 \frac{du}{dx} \left( \frac{d^2 u}{dx^2} \right)$

For the third bracket,

$\displaystyle \frac{d}{dx} \left( \frac{dy}{du} \right) = \frac{d}{du} \left( \frac{dy}{du} \right) \left( \frac{du}{dx} \right) = \frac{d^2y}{du^2 } \left( \frac{du}{dx} \right)$

For the fourth bracket,

$\displaystyle \frac{d}{dx} \left( \frac{d^2 u}{dx^2} \right) = \frac{d^3u}{dx^3}$

Therefore,


$
\begin{equation}
\begin{aligned}

\frac{d^3y}{dx^3} =& \left[ \frac{d^3y}{du^3} \left( \frac{du}{dx} \right) \cdot \left( \frac{du}{dx}\right)^2 \right] +
\left[ \frac{d^2y}{du^2} \cdot 2 \frac{du}{dx} \left( \frac{d^2 u}{dx^2} \right) \right] +
\left[ \frac{d^2y}{du^2} \left( \frac{du}{dx} \right) \cdot \frac{d^2u}{dx^2} \right] +
\left[ \frac{dy}{du} \cdot \frac{d^3 u}{dx^3} \right]
\\
\\
\\
\\
\frac{d^3y}{dx^3} =& \frac{d^3y}{du^3} \left( \frac{du}{dx} \right) ^3 + 2 \frac{d^2y}{du^2} \frac{du}{dx} \left( \frac{d^2 u}{dx^2} \right) + \frac{d^2 y}{du^2} \frac{du}{dx} \left( \frac{d^2 u}{dx^2} \right) + \frac{dy}{du} \frac{d^3u}{dx^3}
\\
\\
\\
\\
\frac{d^3y}{dx^3} =& \frac{d^3 y}{du^3} \left( \frac{du}{dx} \right)^3 + 3 \frac{d^2y}{du^2} \frac{du}{dx} \frac{d^2 u}{dx^2} + \frac{dy}{du} \frac{d^3u}{dx^3}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...