Sunday, July 1, 2018

Calculus of a Single Variable, Chapter 5, 5.2, Section 5.2, Problem 30

Solving indefinite integral by u-substitution, we follow:
int f(g(x))*g'(x) = int f(u) *du where we let u = g(x) .
By following the instruction to let "u" be the denominator of the integral,
it means we let: u = root(3)(x) -1
Find the derivative of "u" which is du = 1/(3x^(2/3))dx
Then du =1/(3x^(2/3))dx can be rearrange into 3x^(2/3)du =dx .
Applying u-substitution using u =root(3)(x)-1 and 3x^(2/3)du =dx .
int root(3)(x)/(root(3)(x)-1) dx = int root(3)(x)/u*3x^(2/3)du
= int (x^(1/3)*3x^(2/3))/udu
=int (3x^(1/3+2/3))/udu
=3 int x/udu
Note: x^(1/3+2/3) = x^(3/3)
=x^1 or x
Algebraic techniques:
From u = root(3)(x)-1 , we can rearrange it into root(3)(x)=u+1 .
Raising both sides by a power 3:
(root(3)(x))^3 =(u+1)^3
x = (u+1)*(u+1)*(u+1)
By FOIL: (u+1)*(u+1) = u*u +u*1+1*u+1*1
= u^2+u+u+1
= u^2+2u+1
Then let (u+1)(u+1) = u^2 +2u +1 in (u+1)(u+1)(u+1) :
(u+1)(u+1)(u+1) = (u+1)*(u^2+2u+1)
Applying distributive property:
(u+1)(u^2+2u+1) = u *(u^2+2u+1) + 1*(u^2+2u+1)
= u^3 +2u^2+u +u^2+2u+1
=u^3+3u^2+3u+1
then x = (u+1)*(u+1)*(u+1) is the same as
x =u^3+3u^2+3u+1
Substitute x=u^3+3u^2+3u+1 in 3 int x/udu :
3 int x/udu = 3 int (u^3+3u^2+3u+1 )/u du
= 3int (u^3/u+(3u^2)/u+(3u)/u+1/u) du
=3int (u^2+3u+3+1/u) du
Evaluating each term in separate integral:
3 * [ int u^2 *du+ int 3u*du+int 3*du+ int 1/u du]
where:
int u^2 *du = u^3/3
int 3u*du =(3u^2)/2
int 3*du = 3u
int 1/u du= ln|u|
3 * [ int u^2 *du+ int 3u*du+int 3*du+ int 1/u du] becomes:
3*[u^3/3 +(3u^2)/2 +3u+ln|u|] +C= 3u^3/3 +(9u^2)/2 +9u+3ln|u|+C
Substitute u = root(3)(x)-1:
3u^3/3 +(9u^2)/2 +9u+3ln|u| +C = (root(3)(x)-1)^3 +(9(root(3)(x)-1)^2)/2 +9(root(3)(x)-1)+3ln|(root(3)(x)-1)| +C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...