Saturday, October 13, 2018

f(x) = 1/(3-x) , c=1 Find a power series for the function, centered at c and determine the interval of convergence.

To determine the power series centered at c, we may apply the formula for Taylor series:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f''(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f'^4(c))/(4!)(x-c)^4 +...
To list the f^n(x) for the given function f(x)=1/(3-x) centered at c=1 , we may apply Law of Exponent: 1/x^n = x^-n  and  Power rule for derivative: d/(dx) x^n= n *x^(n-1) .
f(x) =1/(3-x)
      = (3-x)^(-1)
Let u =3-x then (du)/(dx) = -1
d/(dx) c*(3-x)^n = c *d/(dx) (3-x)^n
                          = c *(n* (3-x)^(n-1)*(-1)
                          = -cn(3-x)^(n-1)
f'(x) =d/(dx) (3-x)^(-1)
           =-(-1)(3-x)^(-1-1)
            =(3-x)^(-2) or 1/(3-x)^2
f^2(x) =d/(dx) (3-x)^(-2)
            =-(-2)(3-x)^(-2-1)
            =2(3-x)^(-3) or 2/(3-x)^3
f^3(x) =d/(dx)2(3-x)^(-3)
            =-2(-3)(3-x)^(-3-1)
            =6(3-x)^(-4) or 6/(3-x)^4
f^4(x) =d/(dx)6(3-x)^(-4)
           =-6(-4)(3-x)^(-4-1)
           =24(3-x)^(-5) or 24/(3-x)^5
Plug-in x=1 for each f^n(x) , we get:
f(1)=1/(3-1) =1/2
f'(1)=1/(3-1)^2 = 1/4
f^2(1)=2/(3-1)^3 =1/4
f^3(1)=6/(3-1)^4 = 3/8
f^4(1)=24/(3-1)^5 = 3/4
Plug-in the values on the formula for Taylor series, we get:
1/(3-x) = sum_(n=0)^oo (f^n(1))/(n!) (x-1)^n
=f(1)+f'(1)(x-1) +(f^2(1))/(2!)(x-1)^2 +(f^3(1))/(3!)(x-1)^3 +(f^4(1))/(4!)(x-1)^4 +...
 
=1/2+1/4(x-1) +(1/4)/(2!)(x-1)^2 +(3/8)/(3!)(x-1)^3 +(3/4)/(4!)(x-1)^4 +...
=1/2+1/4(x-1) +(1/4)/2(x-1)^2 +(3/8)/6(x-1)^3 +(3/4)/24(x-1)^4 +...
=1/2+1/4(x-1) + 1/8(x-1)^2 +1/16(x-1)^3 +1/32(x-1)^4 +...
=sum_(n=1)^oo ((x-1)/2)^n
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n  is convergent if |r|lt1 or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
By comparing sum_(n=0)^oo ((x-1)/2)^n or  sum_(n=0)^oo 1*((x-1)/2)^n with  sum_(n=0)^oo a*r^n , we determine: r = (x-1)/2 .
Apply the condition for convergence of geometric series: |r|lt1 .
|(x-1)/2|lt1
-1lt(x-1)/2lt1
Multiply each sides by 2:
-1*2lt(x-1)/2*2lt1*2
-2ltx-1lt2
Add 1 on each sides:
-2+1ltx-1+1lt2+1
-1ltxlt3
Thus, the power series  of the function f(x) = 1/(3-x) centered at c=1 is sum_(n=1)^oo ((x-1)/2)^n  with an interval of convergence: -1ltxlt3 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...